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We study the effect of weak environmental fluctuations on a deterministic map dynamics, which, in
the unperturbed case, is characterized by anomalous diffusion. We show, with the help of numerical
calculations, that there is a crossover time 1/¢€, at which the waiting time distributions change from
an inverse power-law distribution into an exponential behavior. We prove theoretically that the
diffusion coefficient of the long-time process is proportional to 1/e*, with a positive or negative,

according to whether we consider the superdiffusive or the subdiffusive case.

With very weak

environmental fluctuations the diffusion coefficient of the former case becomes anomalously large
and that of the latter case anomalously small. The theoretical predictions are confirmed by the

numerical results.

PACS number(s): 05.40.4j, 05.60.+w

I. INTRODUCTION

Diffusion processes play a quite important role in many
fields of chemistry, physics, and biology [1]. Processes of
normal diffusion are those characterized by a variance
increasing linearly in time [1]. In the last decade the at-
tention of investigators has been attracted by the study
of processes with a variance that is not a linear function
of time but is either faster or slower than normal diffu-
sion [2-18]. Anomalous diffusion is defined by observing
the second moment of, say, the spatial coordinate of the
diffusing particle, namely, looking at (z2(t)), which gen-
erally has a time dependence of the form

(z?(t)) = Kt*H (1)

at long times. Anomalous diffusion corresponds to H #
1/2. Following the literature, we will term the case H >
1/2 superdiffusion (diffusion faster than the normal) and
the case H < 1/2 subdiffusion (diffusion slower than the
normal).

Typical models used to study anomalous diffusions are,
for instance, random walks, or their dynamical represen-
tation in the form of a mapping. From a theoretical point
of view [2-6], the origin of anomalous diffusion can then
be traced back to the analytic form of the distribution
of waiting times, v¥(t), in one of the possible “states” of
these mappings. These are the sojourn times in a state
of the position or the velocity of the diffusing particle.
Normally, in both cases (i.e., when looking at either the
position or the velocity) the amplitude of the random
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jumps between each sojourn period is constant and fi-
nite (typically, the amplitude of the jumps is taken to
be +1). Under these assumptions, anomalous diffusion
has been shown [2-18] to be generated by a waiting time
distribution with the inverse power-law structure

1
P(t) ~ P for large t. (2)

This is the long-time limit of a process that is trig-
gered by microscopic dynamics, whose details become
irrelevant asymptotically. It is arguable that if (2) is
realized, then all physical observables will exhibit scal-
ing. Broadly speaking, once this asymptotic regime is
achieved, the system is considered to be in its stationary
state.

However, the distribution function (t) should be in-
tegrable (the above expression for the function diverges
for short times). A more realistic form for the waiting
time distribution, for instance, is

A
O . — 3
o) = G 0
with g > 1, where the constant A is related to the time
constant B through a normalization condition to yield

A= (p—1)B* 1, (4)

This means that there are essentially two significant
time ranges. The former, with ¢t < B, is the microscopic
time region where the diffusing system is still far away
from the stationary regime, which is only reached in the
latter time region, t > B.
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A yet more realistic picture of diffusive processes, on
the other hand, should take into account a third time
range. It should be born in mind that (2) is an idealiza-
tion, aiming at pointing out the essence of an anomalous
diffusion process, and the consequent deviations from
standard statistical mechanics. However, over a more ex-
tended time scale, standard statistical mechanics must be
recovered. One could expect to find the following waiting
time distribution instead of (2):

1
Pe(t) ~ Fe‘“ for very large t, (5)

where the subscript € on the distributions denotes the
environmental perturbation. Setting ¢ equal to zero is
equivalent to considering the hierarchical system unaf-
fected by any sort of external (or “environmental”) noise.
Obviously, to extend the treatment to the short time dy-
namics we can combine (3) and (5) to obtain

A
(t) = ——e % 6
¢ ( ) (B _+_t)“e b ( )
the normalization constant A is then
1
= 7
eBeer—1T(1 — u, Be)’ (™

where I'(a, z) is the incomplete gamma function. An il-
lustrative example can be found in the field of weak chaos.
It is well known that the regions on the border between
the chaotic sea and the deterministic islands have frac-
tal properties [19] and that this results in residence times
characterized by the distribution (2). However, this prop-
erty seems to be true only in the case of low-dimensional
dynamical systems. Although the behavior of systems
with a large but finite number of dimensions in a state of
weak chaos is still poorly understood, according to Kon-
ishi [20], in such systems there exists a crossover time
after which the system escapes from the local hierarchy,
which is responsible for the inverse power-law behavior,
and normal diffusive behavior is retrieved. More gen-
erally, in all situations where a deterministic dynamical
approach leads to (2), weak fluctuations produced by the
coupling of the system to the environment are expected
to lead to a structure similar to (6). This means that (1)
at microscopic times t < B the system is expected to ex-
hibit nonstationary behavior, strongly dependent on the
details of the model examined and on the initial condi-
tions; (2) in the time region B < t < 1/e the system
shows the properties of anomalous diffusion; (3) finally,
in the region 1/e <« t the process of standard diffusion,
and hence ordinary statistical mechanics, is recovered.
The main purpose of the present paper is to show that
in spite of its ordinary character, diffusion processes tak-
ing place in the third time region depend critically on
the cutoff ¢; the diffusion coefficient turns out to be pro-
portional to € with o positive or negative according to
whether we consider the subdiffusive or the superdiffusive
case. This means that in the case H > 1/2, the longer
the third time scale is, the larger the standard diffusion
coefficient becomes. For € going to zero this standard
diffusion coefficient becomes critically large. In the case

H < 1/2, on the other hand, the diffusion process taking
place with a speed slower than the standard one is re-
placed by a standard process with a diffusion coefficient
whose intensity vanishes for € going to zero. In this paper
we have used numerical simulation to illustrate qualita-
tively the transition from anomalous (subdiffusion and
superdiffusion) to normal diffusion. We have not yet ap-
proached a quantitative comparison with the theoretical
predictions on the dependence of the intensity of this or-
dinary diffusion on the strength of the noise. This would
require a theory for the derivation of (6) from the inten-
sity of the perturbing noise, which is still not available
in a form suitable for the specific purposes of this paper
(but see [24]). Nevertheless, our theoretical predictions
are exact, once given the waiting-time distribution (6).

The paper is organized as follows. Section II is de-
voted to illustrating the dynamical model used to pro-
duce anomalous diffusion. This model consists of the
maps used in [7,8,16] to derive subdiffusion and superdif-
fusion. The maps are perturbed by a weak Gaussian
stochastic force, and it is numerically shown that the re-
sulting waiting-time distribution in the long-time limit
has the form (5). Sections III and IV are devoted to
studying the long-time limit in the superdiffusive and
subdiffusive cases, respectively. Exact expressions for the
corresponding diffusion coefficients are derived in the lim-
iting case of extremely weak €’s, starting from the prop-
agator of the dynamical system. In Sec. V we rederive
the asymptotic behavior in the superdiffusive case using
a dynamical calculation [8] based on the stationary au-
tocorrelation function of the velocity #. Section VI is
devoted to discussing the main results of this paper and
to formulating some conclusions.

II. THE DYNAMICAL MODEL
UNDER STUDY

The dynamical models considered here were studied
at some length by Geisel and co-workers [7,8] and by
Zumofen and Klafter in [16]. The two maps have the
general form

Tn4+1 = g(wn)a (8)

where g(z + n) = g(z) + n, g(z) = —g(—z), and z is as-
sumed to be in the interval [0,1/2]. For the superdiffusive
case we use

g(z) = (1 +n)z + az® — 1, (9)
and for the subdiffusive case we use
g(z) = (1 + n)z + az”. (10)

The constant a has the value a = 2%(1 — /2). The small
constant 7) is necessary to prevent “sticking” of the diffu-
sive particle at £ = +n. In the numerical calculation in
the “unperturbed” case we used 7 = 10~°. This would
lead to a recovery of normal diffusion in the long-time
limit [8]. However, when the environmental perturbation
is switched on, the stickiness is destroyed by the envi-
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ronmental fluctuation itself; hence, our numerical calcu-
lations in the presence of the environmental fluctuation
were done with n = 0.

In the continuous-time limit both maps are compatible
with the dynamical picture

& =¢. (11)

For both cases we assume that the “output” of the
map (8) (i.e., z,) is equivalent to z in (11). Basically
we replace £ in (11) by zp41 — @, from (8). For the
superdiffusive case, due to the phenomenology exhibited
by the map, i.e., a dynamics characterized by a sequence
of periods of laminar motion interrupted by short chaotic
phases, in practice the velocity £ shows a distinctly inter-
mittent character, alternating in value between +1 and
—1. The residence time in one of these two states is, to
a good degree, given by the inverse power-law distribu-
tion (3), with p = 2/(z—1). Similarly in the subdiffusive
case, using the appropriate map, the laminar phases cor-
respond to the diffusive particle remaining located at a
fixed position. Again, the residence times in one of these
states is given by (3), still with 4 = z/(z —1). The uppe.
dots of Fig. 1 show that the numerical result is very close
to the theoretical prediction (3).

We perturb the dynamics of the maps by replacing (8)
with

Tnt1 = g(wn) + fn’ (12)

where f, is a standard stationary Gaussian process with
zero average and autocorrelation function

10° Ty T

T T T T T
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t
FIG. 1. Waiting-time distributions for p = 2.5. The upper
dots and the upper solid line refer to the case with no envi-
ronmental fluctuations. The dots refer to the map (9) and
the solid line corresponds to the theoretical prediction (3).
The lower dots and the lower solid line refer to the case of
dynamics in the presence of environmental fluctuations. For
the sake of a better visualization they are plotted dividing by
40 the corresponding values. The dots refer to the map (9)
in the presence of noise, as in (12), with 7' =3 x 10713, The
solid line is (6) and (7), with € = 3.2 x 10™*, as determined
through a best fitting procedure. Note that we used dots and
lines instead of histograms for the sake of clarity.

10000

<fnfn+m) = 2T6n,m+n- (13)

The noise is applied to the reduced version of the map,
as defined, for instance, in [9]. To prevent the noise from
making the trajectory escape from the reduced map, we
set reflecting boundary conditions at the borders of the
reduced map (z = 0 and = = 1). For small T’s, the
resulting equilibrium distribution for the waiting times
(see Fig. 1, lower dots and curve) turns out to be (6).
In this figure, the lower solid line is a best fit to the
data using (6) and (7), and it is reasonably close to the
simulated distribution. Incidentally, we note that the
waiting-time distribution in the presence of a small but
finite 1, in the absence of noise, was derived in [8], and
it is qualitatively similar to our Eq. (6), at least in the
limits of small and large times. We conjecture that the
results we obtain on anomalously large or small diffusion
coefficients in the limit of a small € apply also to the case
treated in [8].

We see that environmental fluctuations play a role sim-
ilar to that of Arnold diffusion [20]. They set an upper
time limit on the validity of the inverse power-law nature
of the waiting-time distribution, after which the expo-
nential dominates. Consequently, we can argue that the
lack of a time scale is perceived by the system only at
times t < 1/e. At times much longer than 1/¢ the system
cannot depart from the predictions of ordinary statistical
mechanics. The transition from anomalous diffusion to
the regime of ordinary diffusion is illustrated in Fig. 2, us-
ing map (9) (transition from superdiffusive to standard
diffusion), and in Fig. 3 for map (10) (transition from
subdiffusive to standard diffusion).

We are now in a position to predict, with intuitive ar-
guments, that the “ordinary” diffusion recovered in the
long-time limit as the effect of environmental fluctuations
is characterized by unusually large or small diffusion co-
efficients. Let us integrate the equation of motion (11).
Under the assumption that z is a stationary process, we
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FIG. 2. Second moment (z*(t)) vs time, for x = 2.5 in the
superdiffusive case. The solid lines are the result of numeri-
cal simulations with (lower curve) and without (upper curve)
external perturbation. The dashed lines show the expected
asymptotic behaviors.
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FIG. 3. Second moment (z*(t)) vs time, for p = 1.5 in the
subdiffusive case. The solid lines are the result of numeri-
cal simulations with (upper curve) and without (lower curve)
external perturbation. The dashed lines show the expected
asymptotic behaviors.

show [23] that

d
5 (&*(®) = D(2), (14)

where
D(t) =2 / (EO)E®))dt' = 2(€?) / e(t)dt, (15)

and ®¢(t) is the normalized autocorrelation function of
the velocity &,

2 = QL. (16)

Let us consider the case of superdiffusion. In the range
of times t < 1/e the second moment increases with a
power-law index larger than one. Looking at (14), this
is perceived as a transient process toward an extremely
large value of the diffusion coefficient. The transition
from anomalous to ordinary diffusion can be interpreted
as D(t) reaching a stationary value, which, after the
anomalous increase, can only be extremely large. The
same argument can be applied to the case of subdiffusion.
In this case, D(t) will move toward vanishing values and
when ordinary diffusion is recovered this must be done
through a diffusion coefficient that can only be extremely
small.

We adopted, without loss of generality, the simplified
form for v.(t),

C.

e (7

Ye(t) =

in the theoretical calculation, with the normalization con-
stant
1
C. = .
¢ eer 1IN (1 — p,€)

(18)

This form is obtained from (6) after a proper rescaling of
time.

III. RESPONSE TO WEAK FLUCTUATIONS
OF SYSTEMS IN A STATE
OF ACCELERATED DIFFUSION

The case of superdiffusion can be accurately described
following three different approaches. The first two, the
velocity model (VM) and the jump model (JM), have
been developed by Zumofen and Klafter [16]. The third,
based on a master equation (ME) approach, was de-
veloped by Trefan et al. [21] and proved to be very
close, as far as its predictions are concerned, to the JM
approach (with nonstationary initial conditions). The
reader can find the illustration of these different theories
in the quoted references. Here we shall limit ourselves to
demonstrating that all three theories lead to an enhanced
diffusion coefficient with the same functional dependence
on ¢, lending support to our conjecture that this is an
exact asymptotic property.

A. Response to environmental fluctuations
following the VM

The result in this case follows, after some manipula-
tions, from a formal result obtained by Zumofen and
Klafter [16], concerning the Laplace transform of the sec-

ond moment (z2(t)), denoted by (z2(s)). This is

201 = Pe(s) + s (9)]
83[1 - "pe(s)]

where 1/36(3) is the Laplace transform of the waiting-time
distribution (17). The validity of the expression (19) is
independent of the explicit form of the waiting-time dis-
tribution. In Ref. [16] it has been applied to the un-
perturbed waiting-time distribution ¢(t), but it can be
applied to the case of the perturbed waiting-time distri-
bution (17) with no restriction. Since the exponential
factor makes all the moments of this distribution finite,
we obtain

(x2(5)) = , (19)

Ye(s) =1 —t(e)s + —> ( ) 24, (20)
where £ (e) denotes the nth order moment of the per-
turbed waiting-time distribution. In the limit of long
times, i.e., for s going to zero, we can limit ourselves to
considering the first and the second moment of the per-
turbed waiting-time distribution, obtaining

@) = 75 (21)

This means that, as expected, in the limit of long times
the diffusion process is normal,

(z%(t)) ~ Dt for large t, (22)

with the diffusion coefficient given by
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_ ()
- t(e)
The determination of the first and second moment of

the waiting-time distribution is derived from its Laplace
transform as follows:

(23)

ig=- %)) _ g Holerd
8=0 8=0
_ dibo(€)
= —Cc—2, (24)
t2(e) = dz;p;zf d =Ce _d2¢(zl(:z+ 2
8=0 8=0
_ dz’l/;()(ﬁ)
=C—5 (25)

Note that we consider the limiting case of environmen-
tal fluctuations of almost vanishing intensity, or the case
of extremely small €’s. We can use the following series
expansions of 9)(s)

1—cstt, l<pu<?2
do(s)m{ 1—ts—cs#™!,  2<pu<3 (26)
1-%s+ L s, 3 < p.

We obtain, using (26) in (24) and (25),

H2 1< p<?2
t(e) ~ ¢ const, 2<pu<3
const, 3<u, (27)
B 3 1<pu<?2
t2(e) ~ ¢ €73, 2<u<3
const, 3 < u,

resulting in the following dependence of the diffusion co-
efficients on the strength of the environmental fluctua-
tion:

1

~ ————ea(“) 5 (28)
with
1, l<pu<2
a=<¢ 3—p, 2<u<3 (29)
o0, 3 < p.

This situation is illustrated in Fig. 4. Note that the re-
gion 3 < u refers to a case which would be normal even
without perturbation: normal diffusion is unaffected by
environmental fluctuations of weak intensity. In the re-
gion 2 < p < 3 without perturbation we would have an
asymptotic Lévy process [16,21]; clearly, there is an in-
creasing sensitivity to the influence of weak fluctuations
as p moves from u = 3 to p = 2. The region of ballistic
diffusion, with 1 < p < 2, is that where weak environ-
mental fluctuations have the greatest influence on the
anomalous diffusion process.

T =T T T
1.0} —
05 4
=3
g 0.0
0.5 -
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1 1 ] !
1 2 3 4

n

FIG. 4. Diagram of a(u) vs p for the superdiffusive case
(upper line) and for the subdiffusive case (lower line). The
two cases coincide for p > 3.

B. Response to environmental fluctuations
following the JM

In the nonstationary case [21], the JM model, al-
though seemingly different from the VM [16], leads to
the same asymptotic properties for the probability dis-
tribution P(z,t) as the VM. There are minor differences
in the time evolution of the second moment [21]. In the
specific case of the region of Lévy processes, 2 < u < 3,
it was shown [21] that this approach coincides with the
ME approach. It must be pointed out that although there
are some minor differences concerning multiplicative con-
stants, the power-law behavior of this model is exactly
the same as that of the VM. Therefore, we expect this
model to lead to the same inverse power-law dependence
of the asymptotic diffusion coefficients on the strength of
the environmental fluctuations.

Also, in this case the calculation is done using a re-
lation provided by Zumofen and Klafter [16] [their Eq.
(25)]. Adapting this relation to the problem under dis-
cussion here, we have

Sagy = Be(8) 8Pl s)
(z2(s)) = [1—-1/35(16,3)]2 9k2 o
Lrbe(s)
= de s 30
s[te(s) — 1] (30
The function ¥.(t) is defined by
+oo +o0
T(t) = / it [ vz t)dz, (31)

where t¢(z,t) is the probability density to move a dis-
tance z in time ¢, and reads

Ye(z,8) = 28(1] - )pelt). (32)

In the limiting case of very small s, we get from (30)
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(#2(s)) = %% (33)

which coincides with (21). The prediction of this model
is clearly identical, as far as the dependence of D on € is
concerned, with those of the VM.

C. Response to environmental fluctuations
following the ME

This method was developed [21] for the specific pur-
pose of studying the region of the Lévy processes, 2 <
p < 3. It is based on the master equation

o t +oo
—P(z,t) = / dt'/ K (z—z',t —t')P(',t')dz’.
ot (1] —oo

(34)

The kernel K.(z,t) has the following detailed balance
structure:

+oo
K.(z,t) = I (x, t) — 6(z) /_ (<, t)dz’.  (35)

Using physical arguments inspired by the dynamics of the
map for the accelerated diffusion illustrated in Section II,
the authors of [21] set

1
HE ,t = =Ye ,t ) 36
(@) = g7 el (36)
where v.(z,t) is defined in (32), and t(e) is the first
moment of the waiting time distribution. The Fourier-

Laplace transform of the probability distribution P(zx,t)
in (34) is

o~ 1
Pk,s)= ———, 37
(k,s) s R.(k.9) (37)
where Ke(k, s) has the following explicit form
R 1 .
K(k,s) = = [te(k,8) — ¥e(s)], (38)

&(e)

where 1/;€(k, s) and 1/35(3) follow from the JM approach.
We use the property

A 82P(k,s) 1 d%P(s)
2 = = - \7/ =
(@*(s)) Ok2 t(e)s2 ds? ’ (39)
k=0
to derive the prediction in the limit of small s
. t2(e)
2 =
<$ (S)) E(E)Sz ) (40)

which means standard diffusion with the diffusion coeffi-
cient D given by

_ 2o
t(e)

(41)

Note that the ME method was tailored for the specific
purpose of studying Lévy processes [21]. Thus we must
limit ourselves to exploring only the range 2 < 4 < 3. In
this case we obtain as before

1
e3—n’

D~ (42)

In conclusion, there is agreement on the inverse power-
law dependence of the diffusion coefficient on the inten-
sity of environmental fluctuations obtained following the
three different theoretical approaches.

IV. RESPONSE TO WEAK FLUCTUATIONS
OF SYSTEMS IN A STATE
OF DISPERSIVE DIFFUSION

Years ago [22] Shlesinger evaluated the power H of (1)
as a function of the power u of the distribution of waiting
times in one site. He found [see (1) for the definition of

H]
p—1
w {5
29

These results have been confirmed by the theory and
the numerical calculations of [7,16]. We see that the
inverse power-law nature of the waiting-time distribu-
tion (3) only shows up in the region 1 < u < 2, where it
makes the diffusion process slower than standard diffu-
sion. The map (10) is a suitable way to realize dynamics
close to the continuous random walk of Shlesinger. In this
specific case, borrowing from Zumofen and Klafter [16]
the expression

l<pu<2

2< p. (43)

1 8%9c(k, s)
s[the(s) —1]  Ok?
_ A’Z’e(s) ,
s["/’e(s) - 1]

and making the usual calculation at small s, we obtain

(x2(s))

k=0

(44)
1

(@2(s)) = s’ (45)

obtaining for the diffusion coefficient

1

= —-—. 46
7 (46)
We finally have
B l<p<?
D~ { const, 2<p, (47)
namely, we can set it under the form of (28) with
fu-2, 1<p<2
o= { 0, 2 < p. (48)

Again, the diffusion in the region of normal behavior is
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not affected by fluctuations of weak intensity. The dif-
fusion in the region of anomalous (subdiffusive) behavior
is increasingly affected by noise of weak intensity as we
move from p = 2 to p = 1 (see Fig. 4). It is remark-
able that the power-law dependence of D on the noise
strength parallels the Shlesinger scheme (43).

V. CORRELATION FUNCTION APPROACH

In Sec. II we used (14) to show with intuitive argu-
ments the effects of environmental fluctuations on the
diffusional properties of a system which, in the absence
of perturbation, exhibits anomalous diffusion. What if we
directly used (14) for our theoretical predictions? This is
possible for the superdiffusive case. In this case we need
an explicit expression for ®¢(t) = (£(0)€(t)). A suitable
expression was derived in [8], using an approach which
is dynamically equivalent to the VM model. The main
difference is that the origin for the time is chosen in the
stationary regime. Here, by “stationary” it is meant that

(6()E(t")) = (€(0)E(E —t7)), (49)

a necessary condition for (14) to be applicable.

Using the hypothesis of independent laminar phases,
and averaging over the different realizations, it can be
shown that ®¢(t) becomes identical to the probability
that the times 0 and ¢ belong to the same laminar phase.
We then have (8]

2(0)=; [ (70w, (50)

Recalling that (a;z(s)) = 2&,(s)/s?, we have that [8]

@ () = % (1 + %) - (51)

This is distinctly different from (19), which is not at all
surprising since, in the calculations leading to (19), it is
assumed that at the initial time all particles are placed at
the beginning of their respective laminar region, leading
to a violation of the stationary conditions, necessary to
derive (14). Incidentally, in the superdiffusive case, the
inverse power-law tail of the correlation function leads

to a strong correlation even at long times, with the con-
sequence that the stationarity condition is reached very
slowly. However, the asymptotic behavior of (51) (i.e.,
taking the lowest terms in s) coincides with the asymp-
totic behavior of (19), because in this limit the stationary
condition is eventually realized. As a consequence, also
in this case we recover the expression for D obtained ear-

lier, D = t2(e)/%(e).

VI. CONCLUSIONS

We have examined a physical model, which seems to
display a general property of nature. After a maximum
time, the inverse power-law character of a waiting-time
distribution is lost. This is caused by the presence of
weak environmental fluctuations. With the help of nu-
merical calculations, we have shown that the effect of
external fluctuations is that of changing at long times
the inverse power-law structure of the waiting-time dis-
tribution into an exponential function. The size of the
cutoff of this exponential function, loosely referred to as
the intensity of the environmental fluctuations, defines
a crossover time before which the process of diffusion is
anomalous and after which the diffusion becomes normal.

We have also seen that, although regular, the asymp-
totic diffusion process exhibits a dependence on the “fluc-
tuation” strength, which becomes increasingly sensitive
as we move away from normal diffusion; it becomes max-
imum in the ballistic regime, for the superdiffusive case,
and in the localization state for the subdiffusive case. In
our opinion, this property might have remarkable con-
sequences in that it might allow the experimentalists to
probe the underlying anomalous character of a diffusion
process simply by detecting the direct or inverse power-
law dependence of the diffusion coefficient on the strength
of weak environmental fluctuations.
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